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Recurrence Time Statistics in Chaotic Dynamics. 
I. Discrete Time Maps 
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The dynamics of transitions between the cells of a finite-phase-space partition in 
a variety of systems giving rise to chaotic behavior is analyzed, with special 
emphasis on the statistics of recurrence times. In the case of one-dimensional 
piecewise Markov maps the recurrence problem is cast into a renewal process. 
In the presence of intermittency, transitions between cells define a non- 
Markovian, non-renewal process reflected in the presence of power-law prob- 
ability distributions and of divergent variances and mean values. 

KEY WORDS:  Recurrence time; escape time; Markov partition; fully 
developed chaos; intermittent chaos. 

1. I N T R O D U C T I O N  

Ever since the time of Boltzmann and Poincar6, the recurrence of states of 
a dynamical system has been recognized both as one of the principal 
signatures of its deterministic origin and as a challenge to be met in build- 
ing a consistent statistical theory of the underlying system compatible with 
the fundamental laws of physics? ~ 

In its classical version, Poincar6's recurrence theorem refers to a one- 
parameter family F' of one-to-one measure-preserving transformations. It 
states that if .C is a subset of the phase space F such that kt(C) > 0 [p is 
a completely additive measure with/x(F)  = 1 ], then for almost every point 
P c  C there exists a sufficiently large t such that F'P ~ C. By discretizing 
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time in slices of duration r and further assuming that the transformation F '  
is metrically transitive (ergodic), one can then derive the following expres- 
sion for the mean recurrence time, 

<0F) = r /~(c)  (1.1) 

Unfortunately, for realistic many-body systems it is extremely hard to 
decide whether a given Hamiltonian will give rise to metrically transitive 
transformations. Moreover, Eq. (1.1) suffers from the disadvantage that in 
the limit of continuous time, r--*0, it gives the trivial (and wrong) result 0. 

With the advent of modern chaos theory it has become possible to set 
up simple-looking, low-dimensional models giving rise to complex behavior 
that emulates, to a large extent, the behavior of real world, multivariate 
systems/-'~ Such models constitute ideal case studies for revisiting the for- 
malism of statistical mechanics, for verifying otherwise elusive conjectures, 
and for understanding detailed mechanisms to a degree that cannot be 
attained in the many-particle systems usually considered in statistical 
mechanics/3 sl Furthermore, dissipative chaos modeling complex behavior 
at the macroscopic level, from aperiodic oscillations in chemistry and elec- 
tronics to turbulence and some aspects of atmospheric and climatic 
variability, can also be approached in probabilistic terms. This allows one 
to bypass the fundamental limitations imposed by sensitivity to initial con- 
ditions via probabilistic rather than deterministic predictions, and to 
evaluate various quantities of practical interest as statistical averages. The 
investigation of recurrence time statistics and related properties of a class 
of chaotic, dissipative, noninvertible maps is the principal objective of this 
work. The case of continuous-time systems undergoing invertible dynamics 
will be considered in a separate publication. 

The general formulation is laid down in Section 2. The starting point 
is the Frobenius-Perron (FP) equation for the probability densityJ 3"4~ 
Since recurrence can only be formulated (except for a trivial case) in terms 
of finite volumes in phase space, the question immediately arises whether 
the FP equation can generate a well-defined random process once projected 
onto a phase space partition. This question admits a simple answer for fully 
developed chaotic systems of the tent map type, for which the projected 
dynamics reduces to a Markov chain/r'~ In Section 3 the explicit form of 
the transition probability matrix is obtained for this system, and a full 
theory of recurrence time statistics is worked out and compared success- 
fully with the results of numerical simulation. 

Section 4 is devoted to two prototype models of intermittent chaos: 
the continuous, symmetric cusp map and its discontinuous, antisymmetric 
counterpart. The process generated by the deterministic dynamics on 
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the phase space partition is now shown to be highly non-Markovian. 
Nevertheless, a detailed theory of recurrence statistics can again be worked 
out and compared with the results of numerical simulations. In Section 5 
a number of related statistical properties such as sojourn, escape, and first 
passage times are studied. The intermittency arising from the marginally 
stable fixed points of the maps is shown to have interesting and subtle 
effects on the distributions concerned. Our main conclusions are sum- 
marized in Section 6. 

2. G E N E R A L  F O R M U L A T I O N  

Consider the discrete-time dynamical system 

X,,+l = f(X,,,/1), n = 0 ,  1 .... (2.1) 

where f is the evolution law and /~ the control parameter. It will be 
assumed that under f the state variables X remain confined to a finite, 
invariant part F of phase space. In what follows we shall be interested in 
evolution laws and parameter ranges for which the dynamics is chaotic. As 
is well known, Eq. (2.1) generates an evolution equation for the probability 
density p,,(X), X ~ F, namely, the FP  equation 

p,, + ~(X) = f r  dY 6(X - f(Y,/~)) p,,(Y) (2.2) 

To formulate the problem of recurrence, we consider a finite cell C e F 
and assume that the evolution is started at a point Xo E F. As the evolution 
proceeds, the representative point will in general escape from C, but, unless 
it is part of an exceptional (e.g., periodic) orbit or the system has poor 
ergodic properties, it will be reinjected repeatedly into C. Let 

F(C,O;C,n)=Prob(Xo~C, Xjr  .... X ,_ , r  (2.3) 

be the normalized probability of the first return of the representative point 
to the cell C'at time n. The mean recurrence time is then 

(n,.,.) = Z nF(C, 0; C, n) (2.4) 
I f =  I 

Higher order moments of the recurrence time distribution can be defined 
similarly. 
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Since the deterministic evolution law implies that the members of an 
initial Gibbs ensemble are propagated in time by a 6-function type trans- 
ition probability, F(C, 0; C, n) can also be expressed as 

F(C, O; C,n)=~cdX(,p(Xo) ;cdX, ... ;edX,, , f(.dX,, 

x (-I J(X,.-f'"'(Xo,l~))/i dXop(Xo) (2.5) 
i ' = 1  ( '  

where p is the invariant density and C" is the complement of C in F. In 
practice, the explicit evaluation of (2.5) may not be feasible. For this reason 
we resort to the statistical description afforded by the FP equation (2.2). As 
mentioned in the Introduction, the chief difficulty to be met here is the 
characterization of the process of transition across the boundaries of the 
cell. As a preliminary toward this goal, we introduce a partition of the 
phase space into K nonoverlapping cells { C/} (of which the cell C referred 
to above is just one member), and define a projection operator E onto this 
partition (6 ~ according to 

K 

P,,=Ep,,(X) = ~ , u - ' ( C / ) f  dY p,,(Y)x(X) (2.6) 

where P,, = (P,,(1) ..... P,,(K)) is the probability vector induced by p,,(X) in 
the partition and X = (;(~ ..... XK) denotes the characteristic function of the 
partition, i.e., zi(X) = 1 if X e C/, o, if x ~ Ci- Applying the operator E on 
both sides of Eq. (2.2) we obtain 

P,,+ j = E I dY J(X - f ( Y ,  u)) p,,(Y) (2.7) 

The right-hand side cannot in general be expected to reduce to the form of 
a time-independent transition matrix acting on the probability vector P, .  
In what follows we consider two representative cases in which the foregoing 
partition can nevertheless be explicitly implemented and a recurrence time 
statistics generated, referring, respectively, to fully developed chaos and 
intermittent chaos. 

3. FULLY DEVELOPED CHAOS: A M A R K O V I A N  CASE 

The representative illustration we consider is the one-dimensional 
endomorphism (the tent map at fully developed chaos) 

X,,+,=f(X,,)=I-12X,,-1[, X,, c [0, 1] (3.1) 
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whose invariant density is uniform, p(X)= 1. Markov partitions of this 
map constitute special cases of a general theory of Markov coarse graining 
of piecewise linear maps. (6~ In the present instance, we are interested in a 
partitioning of the unit interval (the phase space F) into K equal segments 
(cells) such that Cj = [ ( j -  1 )/K, j/K), j =  1 ..... K. Then, denoting the n-step 
probability of a transition from cell CJ to cell Ck by P(j, 0; k, n), we have 

P(j, O; k, n) = ~c )dY ~ dX f ( X -  f(")( Y)) P( Y)/~c dY P( ; (3.2) 

Since the invariant density is a constant in the present case, the measure 
P(CJ) =~c; dYp(Y)  = 1/K. On the other hand, performing the delta func- 
tion by integrating over the variable X reduces the domain of integration 
over Y to the set Cj c~ C E. ", C~_" being the nth pre-image of Ck. The value 
of the resulting integral in Eq. (3.2) can be deduced in the following simple 
geometric way: Partitioning the unit square into K 2 square cells of side 
1/K, we plot f~")(Y) versus Y. Then P(j, 0;k, n) is simply K times the 
magnitude of the support in Y of the function f~")(Y) in the cell labeled by 
the coordinates (j, k). 

The one-step transition probability P(j, 0; k, 1), which we may write 
in suggestive notation as the jk-element of a time-independent, (K.K) 
transition matrix W, is found from Eq. (3.2) to be given by 

S f,7 Wjk=K dY d X 6 ( X - I + I 2 Y - 1 1  ) (3.3) 
( j - -  I ) / K  - - -  I ) / K  

This object can be computed explicitly (the geometrical interpretation men- 
tioned earlier is an easy way of doing so!) We find 

=5( ~ / - I . k ' - ~ - t ~ 2 j ,  k ) ,  I <~j<<,[K/2] 

Wjk= WK-j+,.k, W(K+,)/2. k=~K.k (Kodd) 
(3.4) 

where [K/2] =K/2 for even K, and ( K -  1)/2 for odd K. We note that W 
is a doubly stochastic matrix. 

The foregoing partitioning of the unit interval into K equal parts turns 
out to be a Markov partitioning for every K. This follows from the general 
theory ~6~ once we observe that all the boundary points j /K (j = 1, 2 ..... K -  1 ) 
of the partition either belong to (unstable) periodic orbits of the map or 
are preimages of periodic points (but are not, themselves on periodic 
orbits). This has the immediate consequence that W is the transition matrix 
of a stationary, K-state Markov chain. In other words, 

P(j, 0; k, n./= (W")jk (3.51 
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where n =  1, 2,...; j, k =  1 ..... K. It is straightforward to verify that the 
Markov chain is irreducible and ergodicJ 9~ As W is doubly stochastic, the 
limiting distribution lim . . . . .  P(j, 0; k, n) = 1/K is uniform, as it ought to 
be for consistency [we used p(X) = 1 as an input]. 

The eigenvalues of W govern the coarse-grained dynamics of the system. 
The largest eigenvalue, 1, is nondegenerate and corresponds, of course, to the 
invariant distribution #(Cj) = 1/K. Of the remaining K -  1 eigenvalues all of 
which have moduli less than unity, as many have modulus 1/2 as there are 
pointsj/K(j= I ..... K -  1) that belong to periodic orbits of the map. The rest 
of the eigenvalues (as many of the set { ilK} as are preimages of periodic 
points) are equal to zero. For example, when K =  10 we have 2| = 1, 
22.3 = +_i/2 (corresponding to the period-2 cycle formed by the boundary 
points 4/10 and 8/10), and 2 4 . . . . .  2|0 = 0. The relaxation of an initial dis- 
tribution to the invariant distribution therefore occurs with a characteristic 
time I/In 2, except for the case K = 2 u. We have then a Bernoulli partition: 
all the boundary points are preimages of the (unstable) fixed point 0, and the 
(coarse-grained) invariant distribution is attained in a single time step. 

Our interest here is in the recurrence time statistics of the coarse- 
grained dynamics. This is specified by the set {F(j,O;j,n)ll  <~j<~K}, 
where F(j, 0; j, n) is the probability of the first return to cell Cj at time n 
as defined in Eq. (2.3). As the dynamics is that of a Markov chain, the suc- 
cessive waiting times are mutually independent random variables and we 
have the renewal equation |9~ 

P(j,O;j,n)= ~ F( j ,O; j ,n ' )P( j ,O; j ,n-n ' )  (3.6) 
t t t  ~ | 

The convolution sum appearing in the right hand side can be handled 
conveniently in terms of the generating functions 

~/a.<s) = ~ P(j, O; k, n) s", P~.j<s) = ~. F(j, O; j, n) s" <3.7) 
t l  ~ | n ~  I 

We obtain 

�9 eu(s)  = P~(s ) / [  1 + P~.(s)] (3.8) 

As a return to any cell j is a sure event, Fjj(1)= 1. Using the Markov 
property (3.5), we have 

Pjj(s) = ~ (W")jjs" = [sW(1 - s W ) - ' ] j j  (3.9) 
tt~ I 

in obvious notation. 
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The mean time of recurrence in cell C~ is given by (njj) = P~(I). As W 
is doubly stochastic with a nondegenerate eigenvalue 1, we can show by 
introducing its spectral decomposition and by isolating the part pertaining 
to the leading eigenvalue that 

s 

P~i(s) - K( 1 - s )  + ~2i(s) (3.10) 

in the neighborhood of s = 1, where Rii(s) is regular at s =  1. When sub- 
stituted in Eq. (3.8), this suffices to establish that 

(nzJ) = K = ,  u '(C/), Vj (3.11) 

in accord with the ergodic theorem c9~ and Eq. (1.1). The variance of the 
recurrence time, however, depends on the cell index j, being given by 

Varn/t=F}'i(1)+F}i(1)-F~.2(1)=K2[1 + 2/~z/(1)] - -K  (3.12) 

As a check on these predictions, we compare the results in the simplest 
nontrivial case, K =  3, with those of numerical experiments. As the point 
1/3 is a preeimage of the point 2/3 (which is a fixed point of the map), the 
eigenvalues of W are 1, - 1 /2 ,  and 0 in this instance. Using Eqs. (3.9) and 
(3.8) to compute ~z/(s) and P~(s) and inverting the latter transform, we 
find straightforwardly the following recurrence time distributions. For cell 
Ct--  [0, 1/3), 

F(1, 0; 1, n ) =  [1 - ( -  1)"] 2 -I' '+ 3)/2 (3.13) 

For cells C2 = [ 1/3, 2/3) and C3 = [2/3, 1 ], 

F(2, 0; 2, n )= F(3 ,  0; 3, i,) =(1  -&, .  t) 2 ~ -"  (3.14) 

The gaps in the distribution of Eq. (3.13) for even values of n should be 
noted. The mean values are ( n ~ )  = (n22) = (n33) = 3, in agreement with 
the general reffult of Eq. (3.11). The variances, however, differ considerably: 
we find Varnt~ =8 ,  while Var n22=Varn33=2,  the large scatter in nit 
being caused by the slower decay of the distribution F(1, 0; 1, n) With 
increasing n. Furthermore, their magnitude is seen to be comparable to 
that of the mean values. Figure 1 depicts the numerically evaluated 
recurrence time distributions in full agreement with the foregoing theoreti- 
cal values. The agreement extends to other values of K as well. 
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Fig. 1. Recurrence time distributions for the tent map, Eq. (3.1), in (a) cell Ct = [0, I/3), (b) 
C., = [ I/3, 2/31, and (c) C~ = ]2/3, I], as obtained from 9000 recurrences. The mean value (n)  
in each cell is found to be equal to 3, whereas the variances are 7.65, 2.0, and 2,0 respectively. 

4. I N T E R M I T T E N T  CHAOS:  N O N - M A R K O V I A N  CASES 

In the example  studied in Section 3, we were aided substantially by the 
fact that the coarse-grained dynamics  reduced to that of  a finite M a r k o v  
chain for every K. W e  turn n o w  to two prototypical  mode l s  that display 
intermittent chaos,  for which even the s implest  partit ioning of  the phase 
space leads to intricate non-Markov ian  properties.  In order to probe the 
effects of  the curvature of  the m a p  function, of  a noncons tant  invariant 
density, of  the intermittency occas ioned by the tangency of  the m a p  to the 
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bissectrix, and of two competing marginally stable fixed points, we consider 
in this Section the following two maps of the interval [ - 1, 1 ] onto itself: 

(i) The symmetric, continuous, square-root cusp map 

S: f s (X)=  1 - 2  IXl '/2 (4.1) 

The map is tangent to the bissectrix at the marginally stable fixed point 
X =  - 1 ,  and there is an unstable fixed point at 3 -  2 v/2. 

(ii) The antisymmetric, discontinuous counterpart of the foregoing, 

A: f, ,(X) = (2 IXl ,,,2 _ 1) sgn x (4.2) 

which has marginally stable fixed points at both ends, X = -  1 and 
X =  + 1. Both systems are ergodic, with unique, smooth invariant densities 
in [ - 1 ,  1 ] given respectively by 

p s( X) = ( 1 - )0/2 

p.,,(X) = const = 1/2 
(4.3) 

Let us partition the phase space into two cells of equal size, 
C~ - L = [ - 1, 0) and C 2 = R = l-0, 1 ]. This partition no longer generates 
a metric Markov chain, although it remains Markov in a topological sense. 
It is easy to compute the one-step transition probabilities Wjk = P(j, 0; k, 1 ) 
(j, k =  1, 2 o rL ,  R), defined as in Eq. (3.2) with n = 1. We find 

W s = ~ (  13 9 ~)' W,,=�88 ~) (4.4) 

for the symmetric and antisymmetric maps, respectively. Ws is not doubly 
stochastic, since Ps r  On the other hand, W,I reflects the L ~ R  
symmetry of the discontinuous map. The crucial point is that the cell 
dynamics is no longer Markovian. This may be verified, for instance, by 
comparing 

, 

W s = t 2 8 \ 9 0  38 ' W71=~ 12 20 

with the actual two-step probabilities 

) •  9 )  (/101 27 P,,(n = 2) = (4.6) 
P s ( n = 2 ) = L ~ 8 \  81 47 ' 32\  9 23 

82286, I-2-14 
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respectively. Although the boundary point 0 is a preimage of a fixed point 
for the maps S and A, the remarks made in Section 3 regarding Markov 
partitioning do not apply here, as the maps are not piecewise linear. Thus 
it is the curvature of the maps that is responsible for the non-Markov 
nature of the dynamics in terms of the states L and R. 

The explicit evaluation of the n-step probabilities P( j ,O;k ,n )  for 
arbitrary n is quite complicated for the maps under study. Moreover, the 
renewal equation (3.6) does not hold good here: not only is the coarse- 
grained dynamics non-Markovian, it is not even a renewal process in the 
sense that the recurrence times are no longer mutually independent random 
variables, owing to the memory implied by the deterministic dynamics. 
Nevertheless, it turns out to be possible to compute the recurrence time 
distributions F(j, 0; j, n) directly from the definition (2.5). The details are 
given in the Appendix, and the results are as follows. 

Consider the monotonically decreasing sequence { u,.} defined by the 
recursion relation 

U,.=U,. I(1--U,. i), uo= 1/4 (4.7) 

This is the logistic map at parameter value 1, at which the fixed point u = 0 
becomes marginally stable. Then, for the discontinuous map A, we find 
[see Eq. (A.8)]. 

F,,(L, 0; L, n) = F..a(R, 0; R, n) 

= 4(u~'--~-- u~'- I) } (4.8) 
= 4 (u , , -2 -2u , , - t  +u,,) 

With u_l = 1/2, Eq. (4.8) remains valid for n =  1 as well. For the con- 
tinuous cusp map S, there is no L ~  R symmetry in the coarsegrained 
dynamics. We get 

F s ( R , O ; R , n ) = 1 6 ( u , , _ t - 2 u , , + u , , + t ) ,  n>~l (4.9) 

On the other hand, for recurrence in cell L we get [see Eqs. (A.16), (A.17)] 

162 
F s ( L , O ; L , n ) = - - ~ - - ( - 1 ) " ( v , , + 2 + v , + L - v , , - v , , _ l ) ,  n>~l (4.10) 

where )~ = x / ~ -  1, and { v,.} is given by 

v, .=-]w, ,  t(1 - v,._ i), vo= 1/2 (4.11) 

The logistic map thus appears once again, but at a parameter value that is 
less than unity in magnitude. 
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Using the simple closed expressions in Eqs. (4.8)-(4.10), we may verify 
easily that all the distributions obtained above are normalized to unity, i.e., 
the recurrences concerned are sure eventsl The mean recurrence times are 
also obtained readily. For  the discontinuous map A, we find 

(nLz.) A = (nRRS ~I = 2  (4.12) 

For the continuous map S, we get 

(nRR).S. = 4, ( n c c ) s = 4 / 3  (4.13) 

These mean values, fully corroborated by numerical experiments, are 
precisely the reciprocals of the respective measures/~t(R) =lt..~(L),/ts(R), 
and I~s(L). This is a consequence of the ergodicity of the dynamics, 
notwithstanding its highly correlated, non-Markovian character. The 
effects of intermittency are revealed in the higher moments of the 
recurrence times. To understand this we require the asymptotic (n ~ m) 
behavior of the corresponding distributions. It is straightforward to estab- 
lish ~"~ that, for very large values of n, 

u,, = n - i  _ n -2 In n + O(n -3) (4.14) 

while 

[v,,I = const,  e-~ '"+ O(e -~P") (4.15) 

where p = In(v/2 + 1 ). Therefore we have the leading asymptotic behaviors 

F..~(L, 0; L, n) = FA(R, 0; R, n) ~ 17-3 (4.16) 

F s ( R , O ; R , n ) ~  n 3 F s ( L , O ; L , n ) ~ e - ~ , ,  (4.17) 

The second moments (n~.L).a=(n~RSA and (n~R)  s therefore diverge 
(logarithmically, like Z ?  u,), while all the moments (n~_c) s ( q = 2 ,  3,...) 
are finite. In particular, we find 

( V a r n c b ) s = ~  - ~ Iv,.I 
r = 0 

~0.715 (4.18) 

In general, numerical simulation involving the maps S and A is a difficult 
task: The presence of marginally stable fixed points makes the attainment 
of the invariant distribution an extremely slow process, and the results 
generally turn out to be sensitively dependent on the numerical accuracy 
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adopted. The extraction of reliable results thus requires considerable care 
in the choice of initial values, accuracy, and duration of runs. The 
logarithmic divergences of (n~L), ~ and (n~R)s found above show up in 
numerical experiments as slow but systematic increases (rather than con- 
vergence to definite limiting values) as the number of time steps is 
increased. Moreover, the values obtained are larger, the higher the numeri- 
cal resolution. The marginal stability at X = - 1  also affects (VarncL)s 
(which is finite), as does the oscillatory convergence of the sequence {z,.} 
that determines Fs(L, 0; L, n) [cf. Eq. (A.15)]: we find (Var nLL)S ~0.734 
for 20,000 passages, which is not too different from the exact value 0.715 
obtained in Eq. (4.18), given the mitigating factors just cited. For the same 
number of passages one finds (Var nRR)s ~ 53, hinting that the divergence 
stipulated by the theory may indeed be present. 

Figure 2 depicts the numerically computed distributions Fs(R, 0; R, n) 
and Fs(L, 0; L, n) and their fitting by, respectively, a power law and an 
exponential for n/> 5. Again, the agreement with the theoretical results is 
rather satisfactory. 
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Fig. 2. Recurrence time distributions for the symmetric cusp map, Eq. (4.1), in (a) cell 
CI = [ -  1, 0] ,  and (b) C2 = (0, 1], as obtained from 100,000 recurrences (open dots). Dashed 
line represents a best fit with (a) Ki exp[ -In(x/~_ + I ) n ]  and {b) K_,n -3. 
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5. OTHER STATISTICS: SOJOURN, ESCAPE AND 
FIRST PASSAGE TIMES 

Having seen how recurrence times are distributed, we turn now to the 
behavior of related quantities such as sojourn or halting times, escape times, 
and first passage times in the coarse-grained dynamics of the prototypical 
maps considered in Sections 3 and 4. 

5.1. Sojourn Times 

The probability that the sojourn or halt in cell C/persists till time n 
is given by 

n<j, 0, j..)=+,-'< C,) Ic aXo ' dx,, p(Xo) 

x fi ~5(X,.-f(X,. ,)) (5.1) 
r = |  

For a Markov partitioning this simplifies considerably, as one might 
expect: if W is the corresponding transition matrix, we have 

H(j, O; j, n) =( Wjj)" (5.2) 

In the case of the tent map with a K-cell partitioning of the unit interval, 
W is given by Eq. (3.4). When K is a multiple of 3, the fixed point of the 
map at X =  2/3 lies on the boundary between two neighboring cells, and W 
has only one non-vanishing diagonal element, namely W | | =  1/2. On the 
other hand, if K is not a multiple of 3, the fixed point at 2/3 lies inside cell 
C~, where ( l - 1  )/K< 2/3 < l/K. Therefore, W has in this case, two non- 
vanishing diagonal elements, namely Wj~= Wu = 1/2. Thus, while 
H(j, 0; j, 0) = 1 by definition, for n>~ 1 we have 

{22-" d/., ( K = m o d  3) (5.3) 
H(j,O;j,n)= -"(3J.,+di.+) (K:/ :mod 3) 

where 

l--- [2K/3] + 1 (5.4) 

We note that sojourns till time 1, 2 ..... etc., do not comprise a set of 
mutually exclusive events, so that {H(j, 0 ; j ,  n)} does not represent a 
probability distribution in n. 
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Turning to the intermittent case represented by the maps S and A, and 
considering as before the two-ceU partitioning of the interval, we must 
compute the corresponding sojourn probabilities directly from Eq. (5.1). 
The multiple integrals involved may be evaluated, like the recurrence time 
distributions, along the lines indicated in the Appendix. For the map A, we 
find 

H..I(L,O;L,n)=H.4(R,O;R,n)=4u,,, n>~l (5.5) 

with {u,.} defined by Eq. (4.7) as before. For the symmetric map S, we get 

H~(L, 0; L, n )=  16u n>/1 �9 ~ . + i ,  (5.6) 

Recalling the asymptotic behavior of u, [Eq. (4.14)], we may therefore 
conclude that a slow power-law decay (--~n -I)  of the sojourn probability 
is a characteristic signature of the type of intermittency caused by the 
tangency of the map to the bissectrix. This is further borne out by the 
sojourn probability Hs(R, 0; R, n), which is found to be 

H.v(R,O;R,n)=16(-1)"2(v,,+~-v,,+j), n~>l (5.7) 

where {v,.} has been defined in Eq. (4.11). The map S has no point of 
tangency in the cell R, and Hs(R, 0; R, n) decays rapidly with increasing n 
like exp( -pn)  with p = ln(x/~2 + 1 ). 

5.2. Escape and First Passage Times 

The probability that an escape from C~ occurs for the first time at the 
nth time step is given by 

F(L O; L n)=,u-'(Cj) ~ dXo f, dX, "" fc, dX,,- t fc dX,,P(X,,) 

• f i  c~(Jfr-f(X,, j)) (5.8) 
r = l  

where ~ is the complement of C/. It is evident that, in general (and not 
merely in the case of a Markov chain), we have also 

F(j,O;j,n)=H(j,O;j,n-1)-H(j,O;j,n),  n~ l  (5.9) 

in terms of the halting time probabilities defined in the preceding subsec- 
tion. The normalization of the distribution F(j, 0;), n) is manifest, since 
H(j, 0; j, 0) = 1 by definition�9 
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For a Markov partitioning with transition matrix W, we have there- 
fore 

F(j, 0;3, n) =(  W~;)"- ' - (  W,.;.)" (5.10) 

In the case of the tent map, with a partitioning of the unit interval into K 
equal cells, Eq. (5.3) yields 

F(j, O; j, n) = {22-"6i" l 
-"(~J., + a~.,) 

( K =  mod 3) 
(5.11) 

( K ~ m o d  3) 

where l =  [2K/3] + 1, and F(j, 0;), n)=~,,.  ~ for all other values of j .  The 
mean escape time out of cells C~ and C/ (when applicable) is therefore 
equal to 2, with a variance that is also equal to 2. For all other cells Cj 
(j :~ 1 and j r  where applicable), the escape time is equal to 1, with no 
dispersion. 

In the intermittent cases (maps S and A), with just two cells L and R, 
substitution of Eqs. (5.5)-(5.7) in Eq. (5.9) leads at once to the following 
expressions: 

For the map A, 

FA(L, 0; R, n) = F.~(R, 0; L, n) = 4(u,,_ ~ -u, , )  (5.12) 

For the map S, 

Fs(L, 0; R, 17) = ~ ( u . -  u.+ I) (5.13) 

whereas 

Fs(L, 0; R, n) = 16( - 1 )"-  i 2-(v,, + 2 - v.) (5.14) 

Notice that these expressions are also the L ~ R and R---, L first passage 
time probabilities, because/S = R, /~  = L. Given the asymptotic behavior of 
t:,, [Eq.(4.15)], it follows that F s ( R , O ; L , n ) ~ e x p ( - l z n )  with / t =  
ln(x/~+ 1 ), leading to a mean first passage time 

(nRC)S= 1.739 (5.15) 

In contrast, the asymptotic behavior of u,, [Eq. (4.14)] shows that the 
probabilities in Eqs. (5.12) and (5.13) behave asymptotically like n -2. The 
corresponding mean escape times diverge logarithmically. This is an impor- 
tant hallmark of the underlying intermittency. To make the point even 
more explicit, we consider, instead of the partitioning of the phase space 
[ - 1 ,  1] into two halves L and R, a partitioning into (L~.,/S~.), where 
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L~. = [ - 1, - 1 + e], with 0 < e ~< 1 [thus e = 1 corresponds to the original 
(L, R) partitioning]. Tuning e helps us understand how the tangency of the 
maps with the bissectrix at X = -  1 affects the escape time distribution. 
Computing the latter quantity, we find (for n ~> 1 ) 

4 
FA(L,:, 0;/S,:, n) = -  (u,,_ i -u , , )  (5.16) 

e 

and 

4 
Fs(L~., 0;/S,:, n) =e'lt - e / 4 )  (u , , -  u,,+ 1) (5.17) 

where u,.= u,._ i(1 -u , . _  1), as before, but now uo =e/4 rather than 1/4. The 
leading behavior of the distributions in Eqs. (5.16) and (5.17) is ~e  for 
he,%< 1, and ~ 1/(n'-e), for ne >> 1. The mean time of escape from L,: is for- 
mally (4/e) Y'.'~ u,, for the map A, with an extra factor ( 1 - e/4) - J in the 
case of the map S; the divergence of this quantity is thus logarithmic for 
all e > 0, however small. 

Some remarks are in order here: focusing on the map S, one may 
wonder whether there are any contradictions among the following results: 
the first passage time n m_ has finite moments of all orders [ cf. Eq. (5.14) ], 
but the recurrence time nRR has only a finite first moment [cf. Eqs. (4.13) 
and (4.17)]. The divergence of the second and higher moments of nRR is 
clearly an effect of the exceedingly slow decay of the sojourn time probabil- 
ity in L in the vicinity of the marginally stable fixed point at - 1 .  Even 
more dramatic, apparently, is the divergence of the first moment itself of 
the escape time nLR out of L,: [cf. Eqs. (5.13) and (5.17)], while the 
recurrence time nLL has finite moments of all orders. 

Once again, the rationale behind this is the fact that the moments of 
n/_R are computed with the probability 

P(L, O; L, 1;...; L , n - 1 ;  R ,n)  

as the weight factor, while those of nLL are computed with the probability 

P(L, O; R, 1;...; R , n - 1 ;  L ,n)  

as the weight factor; and we have seen that the halting time probability in 
R decays exponentially with time, unlike the n-~ decay of that in L. 
Actually these conclusions can be recovered, qualitatively, by taking the 
continuous time limit, which is legitimate as long as the dynamics is 
restricted in the vicinity of the marginally stable point. 
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So far first passage times have only been discussed for the two-cell 
partition of the intermittent maps. For  the sake of completeness, we finally 
record the first passage time distribution F(j, 0; k, n) in the case of the tent 
map with a K-cell Markov partitioning of the unit interval. Formally, we 
have 

F(j, O; k, n)=lX-l( Ci) fcjdXo fc. dX, "" fc~. dX.-  , 

• dx,,p(Xo) (I  lx,-f(xr_,)l (5.18) 
"k r = l  

where n/> 1, and Ck is the complement of Ck. As in the case of the 
recurrence time distribution, the renewal equation ~ " comes to our aid. The 
generating function 

cr 

Fjk(s) = ~. F(j, 0; k, n) s" (5.19) 
n =  I 

is related to that of P(j, 0; k, n) in a manner analogous to Eq. (3.8): we 
have 

~ , ( s )  = P~k(s)/[ 1 + Pkk(S)] (5.20) 

As we saw earlier [Eq. (3.10)] 

s 
P~(s) K( l - s) + .~j,(s) (5.21) 

in the neighborhood of s = 1, where -~ik(s) is regular at s = 1. Using this in 
Eq. (5.20), it is easy to establish that the mean time of first passage from 
Cj to C k is given by 

( n:, ) = K[1 + , ~ . , ( 1 ) -  k; , ( l ) ]  (5.22) 

6. CONCLUDING REMARKS 

In this paper we have analyzed the dynamics of transitions between 
the cells of a finite phase-space partition in a variety of systems giving rise 
to chaotic behavior, with special emphasis on the statistics of recurrence 
times and related quantities. In the case of one-dimensional piecewise linear 
mappings giving rise to fully developed chaos a Markovian phase space 
partition could be introduced thanks to which the recurrence problem 



208 Balakrishnan et  al. 

could be cast into a renewal process. A full theory of transition time 
statistics of such systems has been worked out, whose main conclusions are 
as follows: the transition time distributions are exponential, the mean 
recurrence times are inversely proportional to the cell size and their 
variance is inversely proportional to the square of the cell size. As a 
byproduct the dispersion of recurrence times is seen to be quite large, com- 
parable to the mean value itself. 

The case of one-dimensional maps giving rise to intermittent behavior 
turned out to be much more intricate. We have established that, at least for 
certain phase space partitions, the transitions between cells define a non- 
Markovian process that cannot be cast into a renewal process. The analysis 
of the asymptotic (long time) behavior of the transition probabilities 
revealed the presence of power law distributions, entailing that the varian- 
c e s - a n d  in some cases even the mean values of the corresponding 
variables--are divergent. 

Our results bring out the complexity of recurrence or, more generally, 
of transition time dynamics in chaotic systems. Thanks to the relative sim- 
plicity of the models considered a detailed analysis could nevertheless be 
carried out, which would have been impossible in systems considered tradi- 
tionally in statistical mechanics. The results are suggestive, and it may be 
hoped that they will stimulate new approaches--at  least by means of 
numerical experimentation--to certain real-world problems that have 
remained elusive so far. 

An obvious extension of the present study is to work out a transition 
time statistics of multivariate systems. Of special importance for the 
applications would be the extension of the theory to continuous time 

dynamical systems. In this context, an interesting question is to identify the 
scaling law relating the mean recurrence times to the size of the phase 
space cell considered and, perhaps also, to the quantifiers of the local 
dynamics such as attractor dimensions and/or  Lyapunov exponents. 

APPENDIX.  RECURRENCE TIME DISTRIBUTIONS FOR THE 
M A P S  S AND A 

We consider first the discontinuous map A, given by 

- A  - - -  L, X ~  R 
(A.1) 

as this case is a little less involved than that of the map S, because it has 
an obvious L ~-~ R symmetry and, moreover, its invariant density is a con- 
stant. Owing to the symmetry referred to, the recurrence time distributions 
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F.,(L, 0; L, n) and F,(R, 0; R, n) are identical. When n = 1, it is trivial to 
see that FA(L, 0; L, 1)=PA(L,  0; L, 1)=3/4.  For n~>2, we have 

F.,(L,O;L,n)=~ dXo dXl. . ,  dX,,_l dX, 
- I  ) I 

x f i  a(X,.-fA(X,._ ,)) (A.2) 
I ' = ]  

The a-functions have support on the set X,.=2XI./~t-1, or X, ._ t= 
( 1 + Xr)2/4, for 2 ~< r ~< n. Defining the monotonically increasing sequence 
{z,.} by the recursion relation 

z,.=(l + z,. i}2/4, z0=0  (A.3) 

we see that the a-functions successively restrict the range of X,_~ to 
[zo, z,] ,  that of X,,_, to [zl ,  z2], and so on. We thus obtain 

f f '  .... FA(L, 0; L, n) = dXo dX~ a(X, -f+,(Xo)) 
l zn  2 

=�88  (A.4) 

remembering that X0 eL.  Using the relation +2 = 4 z , . - 2 z , .  , - 1  to - , . _ j  

eliminate quadratic terms, we get 

FA(L,O;L,n)=2z,,_l--z,,--z,,_ 2, n>~2 (A.5) 

The limit point of the sequence {z,.} is I. Let us therefore set 

z,.= 1 -4u, .  or u,+= (I -z,.)/4 (A.6) 

Then { u,.} is given by 

u,.=u,, i(l -u , ._  t), uo= 1/4 (A.7) 

which is just the logistic map at parameter value corresponding to 
marginal stability of the fixed point at the origin. In terms of { u,.}, we have 
finally the ex0ression quoted in Eq. (4.8), namely, 

FA(L, O; L, n ) =  FA(R, O; R, n ) =  4(u~,-2- u~,_ i) 

=4(U,,_2--2U,, i +u,,) (A.8) 

We note that this result is valid for n = 1 as well, on identifying u t with 
1/2, in accordance with Eq. (A.7). 
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Next,  we turn to the symmetric,  cont inuous  map  S given by 

{ll-2(-X)'~2, X~L 
fs '(X) = - 2 X  1'2 , X~R (A.9) 

The L ~ R symmetry is no longer present. It is easily seen that  

Fs(L, 0; L, 1) = Ps((L, 0; L, 1 ) = 13/16 
(A,10) 

Fs(R, 0; R, 1 ) = Ps(R, 0; R, 1 ) = 7/16 

Let us consider Fs(R,O;R,n) first. Since p s ( X ) = ( l - X ) / 2 ,  we have 
#.s.(R) = I/4, Therefore,  for 17 >~ 2, 

I 0 0 

Fs(R,O,R,n>=2~ dXo(1-Xo,~ dX, . . . f  dX,,_, 
) - - |  - - I  

fl x dX, ,  6(X,.-fs.(X,._ ) (A.11) 
) r = l  

The 6-functions now have support  on the set X , . = I - 2 ( - X , . _ , )  '/2, or 
X , . _ , = - ( 1 - X , . ) 2 / 4 ,  for 2~<r~<n. Therefore,  defining the sequence 
z , . = - ( 1 -  z , .  ,)2/4, z . = 0 ,  we see that the &functions successively imply 
the range of integration [z,., z,._ ,] for X,., where r =  1, 2 ..... n -  1. Bearing 
in mind that  Xo �9 R, we find 

Fs(R, 0; R, n) = 2  1 .... dXo(1 -Xo) 
- -  2 n  - I 

= 4(z,,_ i - - 2 z , , + z , , +  1) (A.12) 

after eliminating quadrat ic  terms with the help of  the recursion relation. As 
lim .. . . . .  z , , = -  1, we set Z , . = -  1 +4u,. ,  to get the expression quoted  in 
Eq. (4.9), namely 

Fs( R, 0 ; R, n) -- 16(u,, _, - 2u,, + u,, +, ) (A.13) 

where {u,.} is given by Eq. (A.7) as before. It is easily verified that  this 
expression holds good also for n = 1. 

Next, we evaluate Fs(L, 0; L, n). Since ps(L) = 3/4, we have 

Fs(L, 0 ; L,  )1) = 3 dXo(  1 - Xo )  dXt ... dX, ,  ) dX, ,  
- 1  ) ) 

• FI c~(x,.-f(x,._))) 
r = l  

(A.14) 
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The 6-functions now have support on the set X,._ ~= (1 -X,.)2/4, 2 <<. r<<, n. 
Defining z , . = ( 1 - z , .  ~)2/4, Zo= 1, we see that the successive ranges of 
integration are z, ~< X',,_ ~ ~< zo, zt ~< X,, __~ ~< z3, etc. Carrying the calculation 
through, we obtain 

( - 1 ) "  
F s ( L ' O ; L ' n ) -  3 (z"+l -z , ,_ l ) (z , ,+t+z , ,_ l+2)  (A.15) 

for n = 1, 2 ..... The presence of the factor ( - 1 ) "  is noteworthy_. It arises 
because the sequence {z,.} approaches the limit point 3 - 2 x / 2 - , ~  2 (the 
fixed point of the map S) in an oscillatory manner. Setting z,. = ~2+ 4~.v,. 
(where ,~ = v/2 - 1 ), we have 

v, .=-2v, ._l(1-v, ._l) ,  vo= 1/2 (A.16) 

Substitution in Eq. (A.15) leads (after elimination of the quadratic terms) 
to  

16,~ 
Fs (L ,O;L ,n )=-~ - ( - l ) " ( v .+ ._+v , ,+ l - - v . - v , , _ l )  (A.17) 

as stated in Eq. (4.10). 
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